ABSTRACT

Despite considerable progress in treating cancer, drug resistance remains the primary hurdle to achieving

 many resistance mechanisms to oromote translation of multivee pro-oncogeneric facturs in incluacting Cyclin D1/3 making it an attractive target to potentiate the anti-cancer activity of targeted therapies and to overcome
drug resistance. Here, we present the development of novel, potent, and selective elF4E inhibitors for use in both treatment-naive and resistance settings across multiple tumor indications.
To capitalize on the potential of targeting elF4E, we developed a series of compounds with unique
properties that maintain anti-tumor efficacy while minimizing toxicity. Our novel, selective, and potent
 elF4E inhibition selectively regulates translation of cancer-dependent pathway proteins instead of global
protein synthesis, thus reducing on-target toxicity and increasing tolerabiity. Cellular profiling demonstrates RBX-elF4Ei are highly selective, nanomolar inhibitors across many tumor types including NSCLC, CRC,
breast, and melanoma. Additionally, RBX-elF4Ei demonstrate consistent efficacy across both sensitive and breast, and melanoma. Addilitionally, RBX-elFAEEi demonstrate consistent efficacy across both sensitive and
resistant cell lines, including intrinsic and acquired resistance models. Combining RBX-elF4Ei with standard of care targeted therapies produces additive responses in both settings, suggesting its potential anti-
neoplastic benefits post progression.

In vivo, daily oral monotherapy treatment with RBX-4EiO5 causes significant tumor growth inhibition across
a variety of indications including a variety of indications including BRAFVOOE CRC, BRAVVGOEE melanoma, ER+ breast cancer, and KRASCRIC
NSCLC, with minimal signs of toxicity. Intratumoral concentration of RBX-4Eios correlates with significant NSCLC, with minimal signs of toxicity. Intratumoral concentration of RBX- 4 EEiO5 correlates with significa
tumor cell growth inhibition, as well as reductions in elF4E target proteins, ODC1 and Cyclin D1.
Collectively, this data supports the addition of RBX-4EiO5 to standard of care in both the naive and treatment resistance settings across a variety of indications including NSCLC, breast, CRC, and melan
IND enabing studies are planned, marking a significant step toward advancing these promising elF4E inhibitiors into clinical develoomen

INTRODUCTION

IF4E binds the 5^{\prime} cap of mRNA and promotes translation initiation IFAE is the rate-limiting factor for IF4E selectively regulates the translation on oncogenic factors with highly ODC1, and Myc
IF4E expression is elevated in many elF4E expression is elevated in many
cancers, including breast cancer, and high
levels are associated with poor prognosis
orced overexpression of elF4E drives tumors in animal models, while genetic inhibition of elF4E decreases tumor
viability but not viability of normal cells

IF4E is a point of convergence for nutiple pro-oncogenic signaling
pathways, incluaing Ras/Rat/MEK and PIKK/AKT/mTOR pathways
Many resistance mechanisms for Ras/Rat/MEK pathway inh

TUMOR TYPES

A.

Figure 1. eIF4E expression is elevated in many tumor types. A) elF4E RNA expression data from TCGA

BRAFV600E MELANOMA \& CRC

D. RBX-4EiO5/dab/tram
E.

A375 tumors, day 21, 4hrs post last dose

Figure 2. RBX-4Ei05 synergizes with BRAF/MEK inhibitors to cause tumor regression in a

A.

Figure 3. RBX-4Ei05 shows anti-tumor efficacy against BRAFV6ooE colon cancer in vivo. A) COLO

ER+BREAST CANCER

Figure 4. RBX-4Ei05 synergizes with CDK4/6 inhibitors and SERDs to cause tumor regression in an ER+ breast cancer model. A) MCF-7 xenograft tumor growth curves with daily oral treatment of SoC (palbocicilib,

KRAS ${ }^{\text {C12C }}$ NSCLC

 SOC RESISTANT CANCER CELLS
A.

c.

D.
E.

. Figure 6. SOC resistant cancers are more dependent on elf4E for growth and REX-4
sensitizes resitas

CONCLUSIONS

Daily oral dosing of RBX-4EiO5 shows in vivo anti-tumor efficacy against multiple cancer types, including melanoma, colon, breast, and lung with no overt signs of toxicity RBX-4EiO5 synergistically combines with standard-of-care (SOC) Ras/Raf/MEK and cell ycle pathway inhibitors for enhanced anti-tumor efficacy
Combination of RBX-4Ei05 with Ras/Raf/MEK pathway inhibitors cause tumo
ell lines with acquired resistance to Ras/Raf/MEK pathway inhibitors are more sensitive to RBX EIF4E inhibitors
re-sensitizes resistant cells to ND-enabling studies are ongoing

